Запрет ввода повторяющихся значений

113094 23.10.2012 Скачать пример

Простая задача: есть диапазон ячеек (допустим А1:А10), куда пользователь вводит данные с клавиатуры. Необходимо обеспечить уникальность всех введенных значений, т.е. запретить пользователю вводить значение, если оно уже присутствует в диапазоне, т.е. было введено ранее.

Выделяем диапазон ячеек и жмем кнопку Проверка данных (Data Validation) на вкладке Данные (Data). В старых версиях - Excel 2003 и ранее - открываем меню Данные - Проверка (Data - Validation). На вкладке Параметры (Settings) из выпадающего списка Тип данных (Allow) выбираем вариант Другой (Custom) и вводим следующую формулу в строку Формула (Formula):

=СЧЁТЕСЛИ($A$1:$A$10;A1)<=1

или в английской версии =COUNTIF($A$1:$A$10;A1)<=1

forbid-duplicates1.png

Смысл этой формулы прост - она подсчитывает количество ячеек в диапазоне A1:A10 равных содержимому ячейки А1. Ввод будет разрешен только в те ячейки, где полученное число меньше или равно 1. Причем диапазон задан жестко (абсолютными ссылками со знаками $), а ссылка на текущую ячейку А1 - относительно. Таким образом подобная проверка будет производиться для каждой выделенной ячейки. Для полноты картины можно в этом окне перейти еще на вкладку Сообщение об ошибке (Error Alert) и ввести текст, который будет появляться при попытке ввести дубликаты:

forbid-duplicates2.png

Вот и все - жмем ОК и наслаждаемся реакцией окружающих :)

Плюс этого способа - в простоте реализации, а минус - в том, что подобную защиту легко отключить в том же диалоговом окне или скопировав и вставив в наш диапазон ячейки с дубликатами. Против лома нет приема. Для предотвращения таких террористических действий пользователя придется включать уже серьезную защиту листа с паролем и писать специальный макрос перехвата копирования. 

Но от случайного ввода дубликатов подобный способ вполне предохранит.

Ссылки по теме


Кирилл
23.10.2012 00:26:31
Вопрос: как быть если, мы постоянно добавляем строчки в диапазон, то есть ввели нового и диапазон стал А1:А11, а в формуле остался А1:А10?
23.10.2012 00:28:30
Пропишите в формуле диапазон с запасом - А1:А100, например.
12.03.2013 14:46:09
разобрался) ..скажите может что то можно придумать насчет того что бы вставлять числа скопированные с других ячеек (не заходя в них - ctrl+C/ctrl+V) и оно реагировало на повторение??
12.03.2013 20:46:41
От порчи ваших ячеек копированием и вставкой защититься можно только специальным макросом, который будет перехватывать вставку, блокировать контекстное меню и CTRL+V.
05.04.2013 10:20:33
Николай, спасибо! Ваш сайт ОЧЕНЬ помогает! Скажите, а можно ли в одном столбце задать два условия для проверки?
У меня уже стоит проверка по кол-ву знаков при вводе и надо в том же столбце исключить повторы.
11.04.2013 08:22:41
Да, можно соединить два условия в одно с помощью логической функции И. Проверяем повторы и чтобы текст был не больше 20 знаков, например:
=И(СЧЁТЕСЛИ($A$1:$A$10;A1)<=1;ДЛСТР(A1)<20)
18.04.2013 10:28:50
спасибо!!
01.08.2013 12:08:48
Николай, добрый день. Мы ведем реестр платежей, нужно, чтобы Эксель сообщал или выделял повторно предоставленные к оплате счета (Совпадает Поставщик и совпадает номер счета). Функция СЧЁТЕСЛИ хороша, но мне еще нужно добавить второе условие "совпадение текста" в графе наименование поставщика. Как это сделать? Подскажите пожалуйста :)
01.08.2013 22:27:45
Склейте номер счета и название поставщика в отдельном столбце с помощью функции СЦЕПИТЬ и делайте проверку по этому столбцу (его можно скрыть потом для маскировки).
02.08.2013 03:26:46
Получилось склеить :), а вот какой функцией сделать проверку склеенного?
02.08.2013 06:50:11
Все той же СЧЕТЕСЛИ - как в примере
19.12.2014 16:01:56
Мне кажется методологически не верно НЕ ДАВАТЬ пользователю вводить дублированные данные. Не однократно сталкивался с такой постановкой задачи и каждый раз оказывалось что эта проблема должны решаться по другому. НЕ ЗАПРЕТОМ ВВОДА.
Например задача. Необходимо создать список сотрудников и ввести их табельные номера. Понятно что табельные номера должны быть уникальны.
Мы создаем программку не дающую возможность вбить дублированный ТабНум и сажаем девочку за эту работу,  Через некоторое время выясняется, что работа встала, потому, что девочка подошла к очередной фамилии, завела ее, а табельный номер, ей программы вбить не дает. она тупо смотрит в список и говорит, ну вот же, здесь написано, Иванов, номер  7534, а Ваша программа не дает его занести. И оказывается, что этот номер действительно правильный для Иванова, но ошибка была совершена ранее 50-ю десятью строчками, при вводе Сидорова, и вместо его номера 7543 он ввела 7534. Приходится искать а где же это раньше она совершила ошибку? В результате работа по вводу (срочная между прочим) останавливается и начинаются судорожные поиски. Поэтому общий принцип такой: Если вы посадили человека (часто малоопытного) за вбивание данных - разрешите ему вбивать все. Ошибки найдете позднее и его данные "причешете". Вывод: Если Вы профессионально занимаетесь  созданием больших списков - время дороже контроля ошибок.
29.05.2017 05:28:25
Нужна помощь! Как проверять совпадения в столбцах, расположенных на 2х разных листах одной книги? Нужно для контроля отпускаемых заказов. Например, заказ уже отгружен на воротах № 1, и нужно чтобы его случайно не отгрузили повторно на воротах №2.
21.09.2017 11:07:45
Всем привет.
Помогите разобраться.
Есть таблица с колонками Дата; Время; Показание. Ввод времени и показаний осуществляется через форму. Временной диапазон занесения (0:00, 0:30, 1:00 и т.д. до 23:30). Это повторяется каждые сутки. Меняется только Дата и показания, временной диапазон остается неизменным.
Так вот, как сделать проверку на случайное повторение временного диапазона привязываясь к дате на текущий день, занесения данных?
25.09.2017 09:59:09
Без файла-примера никто на такой вопрос не ответит - уж больно расплывчато. Лучше на форум или мне в почту с таким.
14.11.2021 17:23:53
Добрый день. Уже 3й день пытаюсь написать формулу для проверки данных, но не получается. Есть клиентская база с номерами телефонов,(бывают клиенты у которых по 2 номера) - но я их ввожу как отдельных клиентов ( по незнанию) для этого создано 2 столбика С и Д с номерами телефонов. Нужно сделать так, что бы при вводе существующего в базе номера выбивало ошибку в какой  бы из столбиков не был ввод, а так же подсвечивались те у которых уже есть дубляжи. Заранее спасибо за помощь, вот что-то вышло. правильно? =СЧЁТЕСЛИ($C$2:$D$3000;C1)<=1
26.01.2022 19:12:46
Всем добрый вечер! Пожалуйста, помогите!! Мне нужно, чтобы  при повторении больше 3 раз одинаковых дат в файле они бы красились скажем красным цветом. Повторение одинаковых 3 дат допускается. Как это сделать? Могу выслать файл. Очень надеюсь на вашу помощь!! Заранее спасибо!

[img][/img]
Наверх